Bone disease in myeloma occurs as a result of complex interactions between myeloma cells and the bone marrow microenvironment. A custom-built DNA single nucleotide polymorphism (SNP) chip containing 3404 SNPs was used to test genomic DNA from myeloma patients classified by the extent of bone disease. Correlations identified with a Total Therapy 2 (TT2) (Arkansas) data set were validated with Eastern Cooperative Oncology Group (ECOG) and Southwest Oncology Group (SWOG) data sets. Univariate correlates with bone disease included: EPHX1, IGF1R, IL-4 and Gsk3beta. SNP signatures were linked to the number of bone lesions, log(2) DKK-1 myeloma cell expression levels and patient survival. Using stepwise multivariate regression analysis, the following SNPs: EPHX1 (P=0.0026); log(2) DKK-1 expression (P=0.0046); serum lactic dehydrogenase (LDH) (P=0.0074); Gsk3beta (P=0.02) and TNFSF8 (P=0.04) were linked to bone disease. This assessment of genetic polymorphisms identifies SNPs with both potential biological relevance and utility in prognostic models of myeloma bone disease.

Authors:

Durie BG, Van Ness B, Ramos C, Stephens O, Haznadar M, Hoering A, Haessler J, Katz MS, Mundy GR, Kyle RA, Morgan GJ, Crowley J, Barlogie B, Shaughnessy J Jr.

Leukemia. 2009 Oct;23(10):1913-9. doi: 10.1038/leu.2009.129. Epub 2009 Aug 6.

Click here to view Article

Tagged with →